On locally irregular decompositions of subcubic graphs

نویسندگان

  • Olivier Baudon
  • Julien Bensmail
  • Hervé Hocquard
  • Mohammed Senhaji
  • Eric Sopena
  • Éric Sopena
چکیده

A graph G is locally irregular if every two adjacent vertices of G have different degrees. A locally irregular decomposition of G is a partition E1, ..., Ek of E(G) such that each G[Ei] is locally irregular. Not all graphs admit locally irregular decompositions, but for those who are decomposable, in that sense, it was conjectured by Baudon, Bensmail, Przyby lo and Woźniak that they decompose into at most 3 locally irregular graphs. Towards that conjecture, it was recently proved by Bensmail, Merker and Thomassen that every decomposable graph decomposes into at most 328 locally irregular graphs. We here focus on locally irregular decompositions of subcubic graphs, which form an important family of graphs in this context, as all non-decomposable graphs are subcubic. As a main result, we prove that decomposable subcubic graphs decompose into at most 5 locally irregular graphs, and only 4 when the maximum average degree is less than 12 5 . We then consider weaker decompositions, where subgraphs can also include regular connected components, and prove the relaxations of the conjecture above for subcubic graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Decomposing Graphs of Large Minimum Degree into Locally Irregular Subgraphs

A locally irregular graph is a graph whose adjacent vertices have distinct degrees. We say that a graph G can be decomposed into k locally irregular subgraphs if its edge set may be partitioned into k subsets each of which induces a locally irregular subgraph in G. It has been conjectured that apart from the family of exceptions which admit no such decompositions, i.e., odd paths, odd cycles an...

متن کامل

Locally Identifying Coloring of Graphs

We introduce the notion of locally identifying coloring of a graph. A proper vertex-coloring c of a graph G is said to be locally identifying, if for any adjacent vertices u and v with distinct closed neighborhood, the sets of colors that appear in the closed neighborhood of u and v are distinct. Let χlid(G) be the minimum number of colors used in a locally identifying vertex-coloring of G. In ...

متن کامل

On packing chromatic number of subcubic outerplanar graphs

The question of whether subcubic graphs have finite packing chromatic number or not is still open although positive responses are known for some subclasses, including subcubic trees, base-3 Sierpiski graphs and hexagonal lattices. In this paper, we answer positively to the question for some subcubic outerplanar graphs. We provide asymptotic bounds depending on structural properties of the weak ...

متن کامل

Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs

An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪ ...∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently conjectured by Baudon et al. that every undirected graph admits a decomposition into 3 locally irre...

متن کامل

Decomposing oriented graphs into 6 locally irregular oriented graphs

An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪ ...∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently conjectured by Baudon et al. that every undirected graph admits a decomposition into 3 locally irre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017